Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
$A = B$
$A \not\subset B$
$B \not\subset A$
$A \subset B$ and $B - A \ne \phi $
If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is
The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ , will have a solution is
If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is